Back to Search
Start Over
Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity.
- Source :
-
Archiv der Pharmazie [Arch Pharm (Weinheim)] 2024 Oct; Vol. 357 (10), pp. e2400486. Date of Electronic Publication: 2024 Jul 12. - Publication Year :
- 2024
-
Abstract
- AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC <subscript>50</subscript> of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC <subscript>50</subscript> of 3.6 µM on neuroblastoma cells.<br /> (© 2024 The Author(s). Archiv der Pharmazie published by Wiley‐VCH GmbH on behalf of Deutsche Pharmazeutische Gesellschaft.)
- Subjects :
- Humans
Artificial Intelligence
Cell Line, Tumor
Dose-Response Relationship, Drug
Molecular Docking Simulation
Molecular Dynamics Simulation
Molecular Structure
Structure-Activity Relationship
Antineoplastic Agents pharmacology
Antineoplastic Agents chemistry
Antineoplastic Agents chemical synthesis
Drug Design
Histone Deacetylase Inhibitors pharmacology
Histone Deacetylase Inhibitors chemistry
Histone Deacetylase Inhibitors chemical synthesis
Histone Deacetylases metabolism
Neuroblastoma drug therapy
Neuroblastoma pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1521-4184
- Volume :
- 357
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Archiv der Pharmazie
- Publication Type :
- Academic Journal
- Accession number :
- 38996352
- Full Text :
- https://doi.org/10.1002/ardp.202400486