Back to Search Start Over

How can dry tropical forests respond to climate change? Predictions for key Non-Timber Forest Product species show different trends in India.

Authors :
Saraf PN
Srivastava J
Munoz F
Charles B
Samal P
Source :
Environmental monitoring and assessment [Environ Monit Assess] 2024 Jul 12; Vol. 196 (8), pp. 727. Date of Electronic Publication: 2024 Jul 12.
Publication Year :
2024

Abstract

The present study provides an assessment of the distribution of key Non-Timber Forest Product species in India, namely Aegle marmelos (L.) Correa, Buchanania lanzan Spreng., Madhuca longifolia (J. Koenig ex L.) J. F. Macbr., Phyllanthus emblica L. and Terminalia bellirica (Gaertn.) Roxb. The suitable habitat was analyzed under current climate scenarios and subsequently, the future distribution (2050s and 2070s) was mapped under RCP 2.6 and 8.5 scenarios, along with the past distribution (mid-Holocene, ~ 6000 cal year BP) using the MaxEnt species distribution model. The distribution of all species is primarily driven by key bioclimatic factors, including annual precipitation (Bio_12), mean annual temperature (Bio_1), isothermality (Bio_3) and precipitation of the coldest quarter (Bio_19). The results indicate that the present distribution of these species is mainly centred in the Western Ghats regions, Central Highlands, North-eastern India and Siwalik hills. The current study suggests that under the future climate change, the suitable habitat for A. marmelos and T. bellirica is expected to increase while for B. lanzan, M. longifolia and P. emblica, it is projected to decline. A. marmelos and T. bellirica are anticipated to exhibit resilience to future climate changes and are expected to be minimally affected, while B. lanzan, M. longifolia and P. emblica are highly sensitive to high temperature and alteration in rainfall pattern expected under future climate changes. The projections of habitat suitability areas can be used as a valuable foundation for developing conservation and restoration strategies aimed at alleviating the climate change impacts on NTFP species.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Details

Language :
English
ISSN :
1573-2959
Volume :
196
Issue :
8
Database :
MEDLINE
Journal :
Environmental monitoring and assessment
Publication Type :
Academic Journal
Accession number :
38995471
Full Text :
https://doi.org/10.1007/s10661-024-12876-9