Back to Search Start Over

Exploiting the Role of Features for Antigens-Antibodies Interaction Site Prediction.

Authors :
Quadrini M
Ferrari C
Source :
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2780, pp. 303-325.
Publication Year :
2024

Abstract

Antibodies are a class of proteins that recognize and neutralize pathogens by binding to their antigens. They are the most significant category of biopharmaceuticals for both diagnostic and therapeutic applications. Understanding how antibodies interact with their antigens plays a fundamental role in drug and vaccine design and helps to comprise the complex antigen binding mechanisms. Computational methods for predicting interaction sites of antibody-antigen are of great value due to the overall cost of experimental methods. Machine learning methods and deep learning techniques obtained promising results.In this work, we predict antibody interaction interface sites by applying HSS-PPI, a hybrid method defined to predict the interface sites of general proteins. The approach abstracts the proteins in terms of hierarchical representation and uses a graph convolutional network to classify the amino acids between interface and non-interface. Moreover, we also equipped the amino acids with different sets of physicochemical features together with structural ones to describe the residues. Analyzing the results, we observe that the structural features play a fundamental role in the amino acid descriptions. We compare the obtained performances, evaluated using standard metrics, with the ones obtained with SVM with 3D Zernike descriptors, Parapred, Paratome, and Antibody i-Patch.<br /> (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
1940-6029
Volume :
2780
Database :
MEDLINE
Journal :
Methods in molecular biology (Clifton, N.J.)
Publication Type :
Academic Journal
Accession number :
38987475
Full Text :
https://doi.org/10.1007/978-1-0716-3985-6_16