Back to Search
Start Over
Targeting ROS in cancer: rationale and strategies.
- Source :
-
Nature reviews. Drug discovery [Nat Rev Drug Discov] 2024 Aug; Vol. 23 (8), pp. 583-606. Date of Electronic Publication: 2024 Jul 09. - Publication Year :
- 2024
-
Abstract
- Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.<br /> (© 2024. Springer Nature Limited.)
- Subjects :
- Humans
Animals
Tumor Microenvironment drug effects
Oxidation-Reduction drug effects
Signal Transduction drug effects
Drug Discovery
Neoplastic Stem Cells drug effects
Neoplastic Stem Cells metabolism
Reactive Oxygen Species metabolism
Neoplasms drug therapy
Neoplasms metabolism
Neoplasms pathology
Antineoplastic Agents therapeutic use
Antineoplastic Agents pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1474-1784
- Volume :
- 23
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Nature reviews. Drug discovery
- Publication Type :
- Academic Journal
- Accession number :
- 38982305
- Full Text :
- https://doi.org/10.1038/s41573-024-00979-4