Back to Search Start Over

Demulsification with simultaneous water purification by coupling filtration and enhanced oil droplet coalescence at anode interface in an electrochemical reactor.

Authors :
Li X
Zhang G
Hu C
Lan H
Liu H
Source :
Journal of environmental sciences (China) [J Environ Sci (China)] 2024 Dec; Vol. 146, pp. 118-126. Date of Electronic Publication: 2023 Jun 19.
Publication Year :
2024

Abstract

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.<br /> (Copyright © 2023. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1001-0742
Volume :
146
Database :
MEDLINE
Journal :
Journal of environmental sciences (China)
Publication Type :
Academic Journal
Accession number :
38969440
Full Text :
https://doi.org/10.1016/j.jes.2023.06.014