Back to Search Start Over

Unraveling the intricacies of cold-inducible RNA-binding protein: A comprehensive review.

Authors :
Rana S
Jogi MK
Choudhary S
Thakur R
Sahoo GC
Joshi V
Source :
Cell stress & chaperones [Cell Stress Chaperones] 2024 Aug; Vol. 29 (4), pp. 615-625. Date of Electronic Publication: 2024 Jul 03.
Publication Year :
2024

Abstract

Cold-inducible RNA-binding protein (CIRP) is a versatile RNA-binding protein, pivotal in modulating cellular responses to diverse stress stimuli including cold shock, ultraviolet radiation, hypoxia, and infections, with a principal emphasis on cold stress. The temperature range of 32-34 °C is most suitable for CIRP expression. The human CIRP is an 18-21 kDa polypeptide containing 172 amino acids coded by a gene located on chromosome 19p13.3. CIRP has an RNA-recognition motif (RRM) and an arginine-rich motif (RGG), both of which have roles in coordinating numerous cellular activities. CIRP itself also undergoes conformational changes in response to diverse environmental stress. Transcription factors such as hypoxia-inducible factor 1 alpha and nuclear factor-kappa B have been implicated in coordinating CIRP transcription in response to specific stimuli. The potential of CIRP to relocate from the nucleus to the cytoplasm upon exposure to different stimuli enhances its varied functional roles across different cellular compartments. The different functions include decreasing nutritional demand, apoptosis suppression, modulation of translation, and preservation of cytoskeletal integrity at lower temperatures. This review explores the diverse functions and regulatory mechanisms of CIRP, shedding light on its involvement in various cellular processes and its implications for human health and disease.<br />Competing Interests: Declarations of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1466-1268
Volume :
29
Issue :
4
Database :
MEDLINE
Journal :
Cell stress & chaperones
Publication Type :
Academic Journal
Accession number :
38969204
Full Text :
https://doi.org/10.1016/j.cstres.2024.07.001