Back to Search Start Over

GSK3 regulation Wnt/β-catenin signaling affects adipogenesis in bovine skeletal muscle fibro/adipogenic progenitors.

Authors :
Zhang J
Wang E
Li Q
Peng Y
Jin H
Naseem S
Sun B
Park S
Choi S
Li X
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Aug; Vol. 275 (Pt 2), pp. 133639. Date of Electronic Publication: 2024 Jul 04.
Publication Year :
2024

Abstract

Clarifying the cellular origin and regulatory mechanisms of intramuscular fat (IMF) deposition is crucial for improving beef quality. Here, we used single-nucleus RNA sequencing to analyze the structure and heterogeneity of skeletal muscle cell populations in different developmental stages of Yanbian cattle and identified eight cell types in two developmental stages of calves and adults. Among them, fibro/adipogenic progenitors (FAPs) expressing CD29 (ITGA7) <superscript>pos</superscript> and CD56 (NCAM1) <superscript>neg</superscript> surface markers were committed to IMF deposition in beef cattle and expressed major Wnt ligands and receptors. LY2090314/XAV-939 was used to activate/inhibit Wnt/β-catenin signal. The results showed that the blockade of Glycogen Synthase Kinase 3 (GSK3) by LY2090314 promoted the stabilization of β-catenin and reduced the expression of genes related adipogenic differentiation (e.g., PPARγ and C/EBPα) in bovine FAPs, confirming the anti-adipogenic effect of GSK3. XAV-939 inhibition of the Wnt/β-catenin pathway promoted the lipid accumulation capacity of FAPs. Furthermore, we found that blocking GSK3 enhanced the paracrine effects of FAPs-MuSCs and increased myotube formation in muscle satellite cells (MuSCs). Overall, our results outline a single-cell atlas of skeletal muscle development in Yanbian cattle, revealed the role of Wnt/GSK3/β-catenin signaling in FAPs adipogenesis, and provide a theoretical basis for further regulation of bovine IMF deposition.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
275
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38969042
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.133639