Back to Search Start Over

The effect of an acidic environment during the hydrothermal carbonization of sewage sludge on solid and liquid products: The fate of heavy metals, phosphorus and other compounds.

Authors :
Czerwińska K
Wierońska-Wiśniewska F
Bytnar K
Mikusińska J
Śliz M
Wilk M
Source :
Journal of environmental management [J Environ Manage] 2024 Aug; Vol. 365, pp. 121637. Date of Electronic Publication: 2024 Jul 04.
Publication Year :
2024

Abstract

The pH of sewage sludge is a crucial factor during the hydrothermal carbonization process that influences the characteristics of the resulting products and migration of certain compounds from the solid to liquid phase. Accordingly, this work is focused on examining the pH impact during the HTC process, in particular, pH equals 2, 3, 4, 5 and 6 on the individual hydrothermally carbonized products generated at 200 °C and 2 h residence time. For this reason, the chemical and physical indicators describing the post-processing liquid and hydrochar were determined. For instance, it was observed that the phosphorus content detected in the liquid, derived at pH2, rose significantly by 80%. Furthermore, decreasing the pH of sewage sludge had a significant impact on the ash content and the calorific value of the hydrochar. Additionally, changes in the specific surface area of hydrochar were noticed: pH = 5 and pH = 6 showed an increase of 20-30%, while for lower pH values a decrease of c.a. 26% was achieved. The distribution of heavy metals between the obtained fractions in the HTC process (solid and liquid) indicated that 92 to almost 100% of the tested heavy metals were transferred to the hydrochar. A significant effect of pH on the distribution between these fractions was observed only for Zn and Ni. For instance, for pH = 2, Zn and Ni in post-processing liquid were 34% and 29%, respectively. In addition, the sequential extraction of heavy metals from hydrochar was also performed in order to identify mobile and non-mobile phases. It was noticed that the acidic environment favours a higher amount of mobile heavy metals in hydrochar. The largest effect was observed for Cd, Pb, Cr and Cu, for which, at pH = 2, their respective amounts in the mobile fraction were 2.7; 3.6; 1.8; 6.2 times higher, compared to the hydrochar without pH correction.<br />Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Malgorzata Wilk reports financial support was provided by National Science Centre Poland. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)

Details

Language :
English
ISSN :
1095-8630
Volume :
365
Database :
MEDLINE
Journal :
Journal of environmental management
Publication Type :
Academic Journal
Accession number :
38968886
Full Text :
https://doi.org/10.1016/j.jenvman.2024.121637