Back to Search Start Over

Transcriptomics reveal a unique phago-mixotrophic response to low nutrient concentrations in the prasinophyte Pterosperma cristatum .

Authors :
Charvet S
Bock NA
Kim E
Duhamel S
Source :
ISME communications [ISME Commun] 2024 Jun 14; Vol. 4 (1), pp. ycae083. Date of Electronic Publication: 2024 Jun 14 (Print Publication: 2024).
Publication Year :
2024

Abstract

Constitutive mixoplankton-plastid-bearing microbial eukaryotes capable of both phototrophy and phagotrophy-are ubiquitous in marine ecosystems and facilitate carbon transfer to higher trophic levels within aquatic food webs, which supports enhanced sinking carbon flux. However, the regulation of the relative contribution of photosynthesis and prey consumption remains poorly characterized. We investigated the transcriptional dynamics behind this phenotypic plasticity in the prasinophyte green alga Pterosperma cristatum. Based on what is known of other mixoplankton species that cannot grow without photosynthesis (obligate phototrophs), we hypothesized that P. cristatum uses phagotrophy to circumvent the restrictions imposed on photosynthesis by nutrient depletion, to obtain nutrients from ingested prey, and to maintain photosynthetic carbon fixation. We observed an increase in feeding as a response to nutrient depletion, coinciding with an upregulation of expression for genes involved in essential steps of phagocytosis including prey recognition, adhesion and engulfment, transport and maturation of food vacuoles, and digestion. Unexpectedly, genes involved in the photosynthetic electron transfer chain, pigment biosynthesis, and carbon fixation were downregulated as feeding increased, implying an abatement of photosynthesis. Contrary to our original hypothesis, our results therefore suggest that depletion of inorganic nutrients triggered an alteration of trophic behavior from photosynthesis to phagotrophy in P. cristatum . While this behavior distinguishes P. cristatum from other groups of constitutive mixoplankton, its physiological response aligns with recent discoveries from natural microbial communities. These findings indicate that mixoplankton communities in nutrient-limited oceans can regulate photosynthesis against bacterivory based on nutrient availability.<br />Competing Interests: None declared.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)

Details

Language :
English
ISSN :
2730-6151
Volume :
4
Issue :
1
Database :
MEDLINE
Journal :
ISME communications
Publication Type :
Academic Journal
Accession number :
38957873
Full Text :
https://doi.org/10.1093/ismeco/ycae083