Back to Search Start Over

Diversity in mechanisms of natural humic acid enhanced current production in soil bioelectrochemical systems.

Authors :
Gao X
Liu K
Zhang C
Cao X
Sakamakic T
Li X
Source :
Bioresource technology [Bioresour Technol] 2024 Aug; Vol. 406, pp. 131057. Date of Electronic Publication: 2024 Jun 28.
Publication Year :
2024

Abstract

The quinoid component of humic acids (HAs) had been studied as exogenous electron mediators (EMs), but the redox-mediating abilities of other functional groups remained unclear. This study evaluated the effects of various HAs functional groups on cellular respiration and extracellular electron transfer. The three EMs increased the current density compared to the control. Current density increased significantly after adding ultraviolet-irradiated HAs (UV-HAs), suggesting that nitrogenous group-mediated redox reactions contributed to high-density current generation. Structural equation model (SEM) results indicated that the contribution of nitrogen-containing groups to electron transfer could exceed 20%. This study proposed a synergistic mechanism: in the soil microbial fuel cells (soil-MFCs), HAs accelerated their component evolution through irreversible redox reactions and promoted extracellular electron transfer. Additionally, HAs-induced high expression of c-Cyts could further enhance high-density current generation. This study demonstrates that humic acids enhance electron transfer and current in bioelectrochemical systems, aiding sustainable energy optimization.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1873-2976
Volume :
406
Database :
MEDLINE
Journal :
Bioresource technology
Publication Type :
Academic Journal
Accession number :
38945502
Full Text :
https://doi.org/10.1016/j.biortech.2024.131057