Back to Search Start Over

Immobilization of biosynthesized gallium nanoparticles in Polyvinylpyrrolidone/Sodium alginate films: Potent bactericidal protection against food spoilage bacteria.

Authors :
El-Sawaf AK
Abdelgawad AM
Nassar AA
Elsherbiny DA
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Aug; Vol. 274 (Pt 2), pp. 133438. Date of Electronic Publication: 2024 Jun 25.
Publication Year :
2024

Abstract

The increasing threat of spoilage bacterial infections, driven by the resistance of bacteria to many antimicrobial treatments, is a significant worldwide public health problem, especially concerning food preservation. To tackle these difficulties, this research investigates the possibility of using packaging sheets that include antimicrobial agents and increasing the prolonged storage time by preventing the bioburden of foodborne pathogens. This approach uses metal nanoparticles' ability to prevent harmful bacteria that cause food spoiling. Gallium nanoparticles (GaNPs) were created using a water-based extract from Andrographis paniculata leaves as a bioreducing agent. The GaNPs were added to a film made of sodium alginate (SA) and polyvinylpyrrolidone (PVP). The study showed that incorporating GaNPs into polymer films resulted in films with a desirable contact angle and decreased water vapor permeability. Significantly, the developed films demonstrated increased efficiency against E.coli O157 compared to other species. Also, it exhibited increased vulnerability to bacterial strains at the biofilm stage, surpassing PVP-SA/GaNPs-0. Remarkably, the toxicity tests showed that the films exhibited no cytotoxicity. Overall, the films indicated their potential for avoiding bacterial bioburden, prolonging the shelf life of perishable products, and contributing to diverse antimicrobial applications in the food industry.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
274
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38936583
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.133438