Back to Search
Start Over
Compensatory Modulation of Seed Storage Protein Synthesis and Alteration of Starch Accumulation by Selective Editing of 13 kDa Prolamin Genes by CRISPR-Cas9 in Rice.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2024 Jun 14; Vol. 25 (12). Date of Electronic Publication: 2024 Jun 14. - Publication Year :
- 2024
-
Abstract
- Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
- Subjects :
- Seed Storage Proteins genetics
Seed Storage Proteins metabolism
Seeds genetics
Seeds metabolism
Glutens genetics
Glutens metabolism
Plant Proteins genetics
Plant Proteins metabolism
Gene Expression Profiling
Oryza genetics
Oryza metabolism
Prolamins metabolism
Prolamins genetics
CRISPR-Cas Systems
Starch metabolism
Gene Editing methods
Gene Expression Regulation, Plant
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 25
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 38928285
- Full Text :
- https://doi.org/10.3390/ijms25126579