Back to Search Start Over

Pulsed electric field performance calculator tool based on an in vitro human cardiac model.

Authors :
Casciola M
Kaboudian A
Feaster TK
Narkar A
Blinova K
Source :
Frontiers in physiology [Front Physiol] 2024 Jun 07; Vol. 15, pp. 1395923. Date of Electronic Publication: 2024 Jun 07 (Print Publication: 2024).
Publication Year :
2024

Abstract

Introduction: Pulsed Field Ablation (PFA) is a novel non-thermal method for cardiac ablation, relying on irreversible electroporation induced by high-energy pulsed electric fields (PEFs) to create localized lesions in the heart atria. A significant challenge in optimizing PFA treatments is determining the lethal electric field threshold (EFT), which governs ablation volume and varies with PEF waveform parameters. However, the proprietary nature of device developer's waveform characteristics and the lack of standardized nonclinical testing methods have left optimal EFTs for cardiac ablation uncertain.<br />Methods: To address this gap, we introduced a laboratory protocol employing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in monolayer format to evaluate the impact of a range of clinically relevant biphasic pulse parameters on lethal EFT and adiabatic heating (AH). Cell death areas were assessed using fluorescent dyes and confocal microscopy, while lethal EFTs were quantified through comparison with electric field numerical simulations.<br />Results and Conclusion: Our study confirmed a strong correlation between cell death in hiPSC-CMs and the number and duration of pulses in each train, with pulse repetition frequency exerting a comparatively weaker influence. Fitting of these results through machine learning algorithms were used to develop an open-source online calculator. By estimating lethal EFT and associated temperature increases for diverse pulse parameter combinations, this tool, once validated, has the potential to significantly reduce reliance on animal models during early-stage device de-risking and performance assessment. This tool also offers a promising avenue for advancing PFA technology for cardiac ablation medical devices to enhance patient outcomes.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2024 Casciola, Kaboudian, Feaster, Narkar and Blinova.)

Details

Language :
English
ISSN :
1664-042X
Volume :
15
Database :
MEDLINE
Journal :
Frontiers in physiology
Publication Type :
Academic Journal
Accession number :
38911328
Full Text :
https://doi.org/10.3389/fphys.2024.1395923