Back to Search Start Over

Identifying problematic arteriovenous fistula with CFD-derived resistance: An exploratory study.

Authors :
Ng O
Thomas S
Gunasekera S
Varcoe R
Barber T
Source :
Journal of biomechanics [J Biomech] 2024 Jun; Vol. 171, pp. 112203. Date of Electronic Publication: 2024 Jun 19.
Publication Year :
2024

Abstract

Arteriovenous fistula (AVF) is the optimal form of vascular access for most haemodialysis dependant patients; however, it is prone to the formation of stenoses that compromise utility and longevity. Whilst there are many factors influencing the development of these stenoses, pathological flow-related phenomena may also incite the formation of intimal hyperplasia, and hence a stenosis. Repeated CFD-derived resistance was calculated for six patient who had a radiocephalic AVF, treated with an interwoven nitinol stent around the juxta-anastomotic region to address access dysfunction. A three-dimensional freehand ultrasound system was used to obtain patient-specific flow profiles and geometries, before performing CFD simulations to replicate the flow phenomena in the AVF, which enabled the calculation of CFD-derived resistance. We presented six patient cases who were examined before and after treatment and our results showed a 77% decrease in resistance, recorded after a surgical intervention to address access dysfunction. Problematic AVFs were found to have high resistance, particularly in the venous segment. AVFs with no reported clinical problems, and clinical patency, had low resistance in the venous segment. There did not appear to be any relationship with clinical problems/patency and resistance values in the arterial segment. Identifying changes in resistance along the circuit allowed stenoses to be identified, independent to that determined using standard sonographic criteria. Our exploratory study reveals thatCFD-derived resistance is a promising metric that allows for non-invasive identification of diseased AVFs. The pipeline analysis enabled regular surveillance of AVF to be studied to aid with surgical planning and outcome, further exhibiting its clinical utility.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)

Details

Language :
English
ISSN :
1873-2380
Volume :
171
Database :
MEDLINE
Journal :
Journal of biomechanics
Publication Type :
Academic Journal
Accession number :
38908106
Full Text :
https://doi.org/10.1016/j.jbiomech.2024.112203