Back to Search Start Over

Sustainability in the green engineering of nanocomposites based on marine-derived polysaccharides and collagens: A review.

Authors :
Yosri N
Khalifa SAM
Attia NF
Du M
Yin L
Abolibda TZ
Zhai K
Guo Z
El-Seedi HR
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Aug; Vol. 274 (Pt 1), pp. 133249. Date of Electronic Publication: 2024 Jun 19.
Publication Year :
2024

Abstract

Nanocomposites are sophisticated materials that incorporate nanostructures into matrix materials, such as polymers, ceramics and metals. Generally, the marine ecosystem exhibits severe variability in terms of light, temperature, pressure, and nutrient status, forcing the marine organisms to develop variable, complex and unique chemical structures to boost their competitiveness and chances of survival. Polymers sourced from marine creatures, such as chitin, chitosan, alginate, sugars, proteins, and collagen play a crucial role in the bioengineering field, contributing significantly to the development of nanostructures like nanoparticles, nanocomposites, nanotubes, quantum dots, etc. These nanostructures offer a wide array of features involving mechanical strength, thermal stability, electrical conductivity, barrier and optical characteristics compared to traditional composites. Notably, marine nanocomposites have distinctive roles in a wide spectrum of applications, among them anti-cancer, anti-microbial, antioxidant, cytotoxic, food packing, tissue engineering and catalytic actions. Sol-gel, hot pressing, chemical vapor deposition, catalytic decomposition, dispersion, melt intercalation, in situ intercalative polymerization, high-energy ball milling and template synthesis are common processes utilized in engineering nanocomposites. According to our literature survey and the Web of Science, chitosan, followed by cellulose, chitin and MAPs emerge as the most significant marine polymers utilized in the construction of nanocomposites. Taken together, the current manuscript underscores the biogenesis of nanocomposites, employing marine polymers using eco-friendly processes. Furthermore, significant emphasis in this area is needed to fully explore their capabilities and potential benefits. To the best of our knowledge, this manuscript stands as the first comprehensive review that discusses the role of marine-derived polymers in engineering nanocomposites for various applications.<br />Competing Interests: Declaration of competing interest The author has no declaration of interest.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
274
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38906361
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.133249