Back to Search Start Over

Hepatic OATP1B zonal distribution: Implications for rifampicin-mediated drug-drug interactions explored within a PBPK framework.

Authors :
Hartauer M
Murphy WA
Brouwer KLR
Southall R
Neuhoff S
Source :
CPT: pharmacometrics & systems pharmacology [CPT Pharmacometrics Syst Pharmacol] 2024 Sep; Vol. 13 (9), pp. 1513-1527. Date of Electronic Publication: 2024 Jun 19.
Publication Year :
2024

Abstract

OATP1B facilitates the uptake of xenobiotics into hepatocytes and is a prominent target for drug-drug interactions (DDIs). Reduced systemic exposure of OATP1B substrates has been reported following multiple-dose rifampicin; one explanation for this observation is OATP1B induction. Non-uniform hepatic distribution of OATP1B may impact local rifampicin tissue concentrations and rifampicin-mediated protein induction, which may affect the accuracy of transporter- and/or metabolizing enzyme-mediated DDI predictions. We incorporated quantitative zonal OATP1B distribution data from immunofluorescence imaging into a PBPK modeling framework to explore rifampicin interactions with OATP1B and CYP substrates. PBPK models were developed for rifampicin, two OATP1B substrates, pravastatin and repaglinide (also metabolized by CYP2C8/CYP3A4), and the CYP3A probe, midazolam. Simulated hepatic uptake of pravastatin and repaglinide increased from the periportal to the pericentral region (approximately 2.1-fold), consistent with OATP1B distribution data. Simulated rifampicin unbound intracellular concentrations increased in the pericentral region (1.64-fold) compared to simulations with uniformly distributed OATP1B. The absolute average fold error of the rifampicin PBPK model for predicting substrate maximal concentration (C <subscript>max</subscript> ) and area under the plasma concentration-time curve (AUC) ratios was 1.41 and 1.54, respectively (nine studies). In conclusion, hepatic OATP1B distribution has a considerable impact on simulated zonal substrate uptake clearance values and simulated intracellular perpetrator concentrations, which regulate transporter and metabolic DDIs. Additionally, accounting for rifampicin-mediated OATP1B induction in parallel with inhibition improved model predictions. This study provides novel insight into the effect of hepatic OATP1B distribution on site-specific DDI predictions and the impact of accounting for zonal transporter distributions within PBPK models.<br /> (© 2024 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.)

Details

Language :
English
ISSN :
2163-8306
Volume :
13
Issue :
9
Database :
MEDLINE
Journal :
CPT: pharmacometrics & systems pharmacology
Publication Type :
Academic Journal
Accession number :
38898552
Full Text :
https://doi.org/10.1002/psp4.13188