Back to Search Start Over

Distinct DNA repair mechanisms prevent formaldehyde toxicity during development, reproduction and aging.

Authors :
Rieckher M
Gallrein C
Alquezar-Artieda N
Bourached-Silva N
Vaddavalli PL
Mares D
Backhaus M
Blindauer T
Greger K
Wiesner E
Pontel LB
Schumacher B
Source :
Nucleic acids research [Nucleic Acids Res] 2024 Aug 12; Vol. 52 (14), pp. 8271-8285.
Publication Year :
2024

Abstract

Formaldehyde (FA) is a recognized environmental and metabolic toxin implicated in cancer development and aging. Inherited mutations in the FA-detoxifying enzymes ADH5 and ALDH2 genes lead to FA overload in the severe multisystem AMeD syndrome. FA accumulation causes genome damage including DNA-protein-, inter- and intra-strand crosslinks and oxidative lesions. However, the influence of distinct DNA repair systems on organismal FA resistance remains elusive. We have here investigated the consequence of a range of DNA repair mutants in a model of endogenous FA overload generated by downregulating the orthologs of human ADH5 and ALDH2 in C. elegans. We have focused on the distinct components of nucleotide excision repair (NER) during developmental growth, reproduction and aging. Our results reveal three distinct modes of repair of FA-induced DNA damage: Transcription-coupled repair (TCR) operating NER-independently during developmental growth or through NER during adulthood, and, in concert with global-genome (GG-) NER, in the germline and early embryonic development. Additionally, we show that the Cockayne syndrome B (CSB) factor is involved in the resolution of FA-induced DNA-protein crosslinks, and that the antioxidant and FA quencher N-acetyl-l-cysteine (NAC) reverses the sensitivity of detoxification and DNA repair defects during development, suggesting a therapeutic intervention to revert FA-pathogenic consequences.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
52
Issue :
14
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
38894680
Full Text :
https://doi.org/10.1093/nar/gkae519