Back to Search
Start Over
PatternJ: an ImageJ toolset for the automated and quantitative analysis of regular spatial patterns found in sarcomeres, axons, somites, and more.
- Source :
-
Biology open [Biol Open] 2024 Jun 15; Vol. 13 (6). Date of Electronic Publication: 2024 Jun 18. - Publication Year :
- 2024
-
Abstract
- Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.<br />Competing Interests: Competing interests The authors declare no competing or financial interests.<br /> (© 2024. Published by The Company of Biologists Ltd.)
Details
- Language :
- English
- ISSN :
- 2046-6390
- Volume :
- 13
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Biology open
- Publication Type :
- Academic Journal
- Accession number :
- 38887972
- Full Text :
- https://doi.org/10.1242/bio.060548