Back to Search
Start Over
[Influence of climate change and human activities on grassland phenology in Anhui Province].
- Source :
-
Ying yong sheng tai xue bao = The journal of applied ecology [Ying Yong Sheng Tai Xue Bao] 2024 Apr 18; Vol. 35 (4), pp. 1092-1100. - Publication Year :
- 2024
-
Abstract
- To explore the influence of climate change and human activities on grassland phenology in Anhui Pro-vince, and quantify the contribution rate of climate change and human activities to phenology, we extracted the phenology of grassland, including the start of growing season (SOS) and the end of growing season (EOS), based on the normalized difference vegetation index (NDVI) dataset of Anhui Province from 2003 to 2020. The temporal and spatial characteristics and future evolution trends of phenological changes were analyzed using slope trend ana-lysis, Mann-Kendall non-parametric test, and Hurst index. We further conducted correlation analysis and residual analysis based on the datasets of mean annual temperature and mean annual precipitation to explore the responses of phenology to climate change and human activities, and quantify their contribution rate. The results showed that SOS and EOS showed an advancing trend with a rate of 0.8 and 0.7 days per year from 2003 to 2020. SOS in the sou-thern part of the study area was significantly earlier than in the central and northern regions, while EOS gradually advanced from south to north. Both SOS and EOS in the future showed an advancing trend. SOS was negatively correlated with annual average temperature, while positively correlated with annual precipitation. EOS was negatively correlated with both annual average temperature and annual precipitation. The proportion of the area where SOS was advanced driven by both climate change and human activities was 56.9%, and the value was 48.3% for EOS. Human activities were the main driving factor for phenology, and climate change was the secondary driving factor. The relative contributions of human activities and climate change to SOS were 66.4% and 33.6%, and to EOS were 61.2% and 38.8%, respectively. Human activities had stronger impact on SOS and EOS than climate change, resulting in earlier phenology.
Details
- Language :
- Chinese
- ISSN :
- 1001-9332
- Volume :
- 35
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Ying yong sheng tai xue bao = The journal of applied ecology
- Publication Type :
- Academic Journal
- Accession number :
- 38884244
- Full Text :
- https://doi.org/10.13287/j.1001-9332.202404.021