Back to Search
Start Over
Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies.
- Source :
-
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie [Biomed Pharmacother] 2024 Jul; Vol. 176, pp. 116936. Date of Electronic Publication: 2024 Jun 14. - Publication Year :
- 2024
-
Abstract
- Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.<br />Competing Interests: Declaration of Competing Interest All the authors declare no conflict of interest in the study presented here. This review has not been previously published and is not currently being considered for publication elsewhere, in full or in part. I confirm that all named authors have seen and approved the final version of the manuscript.<br /> (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1950-6007
- Volume :
- 176
- Database :
- MEDLINE
- Journal :
- Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
- Publication Type :
- Academic Journal
- Accession number :
- 38878685
- Full Text :
- https://doi.org/10.1016/j.biopha.2024.116936