Back to Search Start Over

Making waves: How to clean surface water with photogranules.

Authors :
Trebuch LM
Timmer J
Graaf JV
Janssen M
Fernandes TV
Source :
Water research [Water Res] 2024 Aug 15; Vol. 260, pp. 121875. Date of Electronic Publication: 2024 Jun 03.
Publication Year :
2024

Abstract

Global surface waters are in a bad ecological and chemical state, which has detrimental effects on entire ecosystems. To prevent further deterioration of ecosystems and ecosystem services, it is vital to minimize environmental pollution and come up with ways to keep surface water healthy and clean. Recently, photogranules have emerged as a promising platform for wastewater treatment to remove organic matter and nutrients with reduced or eliminated mechanical aeration, while also facilitating CO <subscript>2</subscript> capture and production of various bioproducts. Photogranules are microbial aggregates of microalgae, cyanobacteria, and other non-phototrophic organisms that form dense spheroidic granules. Photogranules settle fast and can be easily retained in the treatment system, which allows increased amounts of water and wastewater to be treated. So far, photogranules have only been tested on various "high-strength" wastewaters but they might be an excellent choice for treatment of large volumes of polluted surface water as well. Here, we propose and tested for the first time photogranules on their effectiveness to remove nutrients from polluted surface water at unprecedented low concentrations (3.2 mg/L of nitrogen and 0.12 mg/L of phosphorous) and low hydraulic retention time (HRT = 1.5 h). Photogranules can successfully remove nitrogen (<0.6 mg/L, ∼80 % removal) and phosphorous (<0.01 mg/L, 90-95 % removal) to low levels in sequencing batch operation even without the need for pH control. Subjecting photogranules to surface water treatment conditions drastically changed their morphology. While, under "high-strength" conditions the photogranules were spherical, dense and defined, under polluted surface water conditions photogranules increased their surface area by forming fingers. However, this did not compromise their excellent settling properties. Finally, we discuss the future perspectives of photogranular technology for surface water treatment.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1879-2448
Volume :
260
Database :
MEDLINE
Journal :
Water research
Publication Type :
Academic Journal
Accession number :
38875855
Full Text :
https://doi.org/10.1016/j.watres.2024.121875