Back to Search Start Over

Development of environmentally friendly glyoxal-based adhesives with outstanding water repellency utilizing wheat gluten protein.

Authors :
Du X
Li Z
Zhang J
Li X
Du G
Deng S
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jul; Vol. 273 (Pt 1), pp. 133081. Date of Electronic Publication: 2024 Jun 10.
Publication Year :
2024

Abstract

To reduce the release of volatile organic compounds (VOCs) from formaldehyde-based adhesives at the source, the use of low-toxicity and biodegradable glyoxal instead of formaldehyde for the preparation of novel urea-glyoxal resins is a simple and promising strategy. The limited water resistance and adhesive strength of the new urea-glyoxal resins (UG) restrict their extensive application. This study prepared a high-performance, water-resistant WP-UG wood adhesive by combining UG prepolymer with wheat gluten protein (WP). FTIR, XRD, and XPS confirmed the existence of a chemical reaction between the two components, and thermal analysis showed that WP-UG plywood had better thermal stability. Evaluation of the gluing properties revealed that the dry and wet strengths of WP-UG adhesive bonded plywood reached 1.39 and 0.87 MPa, respectively, which were significantly higher than those of UG resin by 35 % and 314 %. The bond strength increased from 0 to 0.89 MPa after immersion in water at 63 °C for 3 h. The results indicated that the introduction of WP promoted the formation of a more complex and tightly packed crosslinking network and developed a glyoxal-based adhesive with high bond strength and water resistance. This study provides a new green pathway for novel urea-formaldehyde binders to replace harmful formaldehyde-based binders, which helps to increase their potential application value in the wood industry.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
273
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38866275
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.133081