Back to Search Start Over

Correlating Substrate Reactivity at Electrified Interfaces with the Electrolyte Structure in Synthetically Relevant Organic Solvent/Water Mixtures.

Authors :
Dorchies F
Serva A
Sidos A
Michot L
Deschamps M
Salanne M
Grimaud A
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2024 Jun 26; Vol. 146 (25), pp. 17495-17507. Date of Electronic Publication: 2024 Jun 11.
Publication Year :
2024

Abstract

Optimizing electrosynthetic reactions requires fine tuning of a vast chemical space, including charge transfer at electrocatalyst/electrode surfaces, engineering of mass transport limitations, and complex interactions of reactants and products with their environment. Hybrid electrolytes, in which supporting salt ions and substrates are dissolved in a binary mixture of organic solvent and water, represent a new piece of this complex puzzle as they offer a unique opportunity to harness water as the oxygen or proton source in electrosynthesis. In this work, we demonstrate that modulating water-organic solvent interactions drastically impacts the solvation properties of hybrid electrolytes. Combining various spectroscopies with synchrotron small-angle X-ray scattering (SAXS) and force field-based molecular dynamics (MD) simulations, we show that the size and composition of aqueous domains forming in hybrid electrolytes can be controlled. We demonstrate that water is more reactive for the hydrogen evolution reaction (HER) in aqueous domains than when strongly interacting with solvent molecules, which originates from a change in reaction kinetics rather than a thermodynamic effect. We exemplify novel opportunities arising from this new knowledge for optimizing electrosynthetic reactions in hybrid electrolytes. For reactions proceeding first via the activation of water, fine tuning of aqueous domains impacts the kinetics and potentially the selectivity of the reaction. Instead, for organic substrates reacting prior to water, aqueous domains have no impact on the reaction kinetics, while selectivity may be affected. We believe that such a fine comprehension of solvation properties of hybrid electrolytes can be transposed to numerous electrosynthetic reactions.

Details

Language :
English
ISSN :
1520-5126
Volume :
146
Issue :
25
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
38863085
Full Text :
https://doi.org/10.1021/jacs.4c05538