Back to Search Start Over

A Halogen-Bonded Fluorescent Molecular Photoswitch: Transition from 3D Cubic Lattice to 1D Helical Superstructure for Polarization Inversion of Circularly Polarized Luminescence.

Authors :
Li S
Wang J
Tian M
Meng X
Wang J
Guo J
Source :
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Sep 02; Vol. 63 (36), pp. e202405615. Date of Electronic Publication: 2024 Jul 31.
Publication Year :
2024

Abstract

The fabrication of materials that can switch between circularly polarized luminescence (CPL) signals is both essential and challenging. Here, two new halogen-bonded fluorescent molecular photoswitches, namely, HB-switch 1 and HB-switch 2, containing α-cyano-substituted diarylethene compounds with different end groups were developed. Upon exposure to specific UV or visible light wavelengths, they exhibited controllable and reversible Z/E photoisomerization. When these switches were integrated into blue-phase liquid crystals (BPLCs), the temperature range of BP significantly expanded. Notably, the BP system incorporating HB-switch 1 exclusively achieved reversible polarization inversion of CPL signals under irradiation with specific UV/Visible light and during cooling/heating. The photo/thermal dual-response behavior of the CPL signals can be attributed to the phase transition from a high-symmetry 3D BP Icubic lattice to a low-symmetry 1D helical superstructure induced by the Z/E photoisomerization of HB-switch 1 and temperature changes. This study underscores the significance of employing halogen-bond assembly strategies to design materials with switchable CPL signals, opening new possibilities for CPL-active systems.<br /> (© 2024 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1521-3773
Volume :
63
Issue :
36
Database :
MEDLINE
Journal :
Angewandte Chemie (International ed. in English)
Publication Type :
Academic Journal
Accession number :
38856204
Full Text :
https://doi.org/10.1002/anie.202405615