Back to Search Start Over

Plasmodium yoelii Infection Enhances the Expansion of Myeloid-Derived Suppressor Cells via JAK/STAT3 Pathway.

Authors :
Zhu Y
Zhou L
Mo L
Hong C
Pan L
Lin J
Qi Y
Tan S
Qian M
Hu T
Zhao Y
Qiu H
Lin P
Ma X
Yang Q
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2024 Jul 15; Vol. 213 (2), pp. 170-186.
Publication Year :
2024

Abstract

Myeloid-derived suppressor cells (MDSCs), the negative immune regulators, have been demonstrated to be involved in immune responses to a variety of pathological conditions, such as tumors, chronic inflammation, and infectious diseases. However, the roles and mechanisms underlying the expansion of MDSCs in malaria remain unclear. In this study, the phenotypic and functional characteristics of splenic MDSCs during Plasmodium yoelii NSM infection are described. Furthermore, we provide compelling evidence that the sera from P. yoelii-infected C57BL/6 mice containing excess IL-6 and granulocyte-macrophage colony-stimulating factor promote the accumulation of MDSCs by inducing Bcl2 expression. Serum-induced MDSCs exert more potent suppressive effects on T cell responses than control MDSCs within both in vivo P. yoelii infection and in vitro serum-treated bone marrow cells experiments. Serum treatment increases the MDSC inhibitory effect, which is dependent on Arg1 expression. Moreover, mechanistic studies reveal that the serum effects are mediated by JAK/STAT3 signaling. By inhibiting STAT3 phosphorylation with the JAK inhibitor JSI-124, effects of serum on MDSCs are almost eliminated. In vivo depletion of MDSCs with anti-Gr-1 or 5-fluorouracil significantly reduces the parasitemia and promotes Th1 immune response in P. yoelii-infected C57BL/6 mice by upregulating IFN-γ expression. In summary, this study indicates that P. yoelii infection facilitates the accumulation and function of MDSCs by upregulating the expression of Bcl2 and Arg1 via JAK/STAT3 signaling pathway in vivo and in vitro. Manipulating the JAK/STAT3 signaling pathway or depleting MDSCs could be promising therapeutic interventions to treat malaria.<br /> (Copyright © 2024 by The American Association of Immunologists, Inc.)

Details

Language :
English
ISSN :
1550-6606
Volume :
213
Issue :
2
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
38819229
Full Text :
https://doi.org/10.4049/jimmunol.2300541