Back to Search Start Over

Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments.

Authors :
Agosti E
Zeppieri M
Ghidoni M
Ius T
Tel A
Fontanella MM
Panciani PP
Source :
World journal of stem cells [World J Stem Cells] 2024 May 26; Vol. 16 (5), pp. 604-614.
Publication Year :
2024

Abstract

Background: Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy. Glioma stem cells (GSCs), a subset within tumors, contribute to resistance, tumor heterogeneity, and plasticity. Recent studies reveal GSCs' role in therapeutic resistance, driven by DNA repair mechanisms and dynamic transitions between cellular states. Resistance mechanisms can involve different cellular pathways, most of which have been recently reported in the literature. Despite progress, targeted therapeutic approaches lack consensus due to GSCs' high plasticity.<br />Aim: To analyze targeted therapies against GSC-mediated resistance to radio- and chemotherapy in gliomas, focusing on underlying mechanisms.<br />Methods: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to September 30, 2023. The search strategy utilized relevant Medical Subject Heading terms and keywords related to including "glioma stem cells", "radiotherapy", "chemotherapy", "resistance", and "targeted therapies". Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated resistance to radiotherapy resistance (RTR).<br />Results: In a comprehensive review of 66 studies on stem cell therapies for SCI, 452 papers were initially identified, with 203 chosen for full-text analysis. Among them, 201 were deemed eligible after excluding 168 for various reasons. The temporal breakdown of studies illustrates this trend: 2005-2010 (33.3%), 2011-2015 (36.4%), and 2016-2022 (30.3%). Key GSC models, particularly U87 (33.3%), U251 (15.2%), and T98G (15.2%), emerge as significant in research, reflecting their representativeness of glioma characteristics. Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) (27.3%) and Notch (12.1%) pathways, suggesting their crucial roles in resistance development. Targeted molecules with mTOR (18.2%), CHK1/2 (15.2%), and ATP binding cassette G2 (12.1%) as frequent targets underscore their importance in overcoming GSC-mediated resistance. Various therapeutic agents, notably RNA inhibitor/short hairpin RNA (27.3%), inhibitors ( e.g., LY294002, NVP-BEZ235) (24.2%), and monoclonal antibodies ( e.g., cetuximab) (9.1%), demonstrate versatility in targeted therapies. among 20 studies (60.6%), the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance (51.5%), followed by reductions in carmustine resistance (9.1%) and doxorubicin resistance (3.0%), while resistance to RTR is reduced in 42.4% of studies.<br />Conclusion: GSCs play a complex role in mediating radioresistance and chemoresistance, emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients.<br />Competing Interests: Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.<br /> (©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.)

Details

Language :
English
ISSN :
1948-0210
Volume :
16
Issue :
5
Database :
MEDLINE
Journal :
World journal of stem cells
Publication Type :
Academic Journal
Accession number :
38817336
Full Text :
https://doi.org/10.4252/wjsc.v16.i5.604