Back to Search Start Over

Differential cortical and subcortical visual processing with eyes shut.

Authors :
Cicero NG
Klimova M
Lewis LD
Ling S
Source :
Journal of neurophysiology [J Neurophysiol] 2024 Jul 01; Vol. 132 (1), pp. 54-60. Date of Electronic Publication: 2024 May 29.
Publication Year :
2024

Abstract

Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar blood oxygenation level-dependent (BOLD) responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitatively distinct pattern of visual processing when the eyes are closed-one that is not simply an overall attenuation but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserve information about stimuli but are then gated off downstream in visual cortex. NEW & NOTEWORTHY When we close our eyes coarse luminance information is still accessible by the visual system. Using functional magnetic resonance imaging, we examined whether eyelid closure plays a unique role in visual processing. We discovered that while the LGN and V1 show equivalent responses when the eyes are open or closed, extrastriate cortex exhibited attenuated responses with eye closure. This suggests that when the eyes are closed, downstream visual processing is blind to this information.

Details

Language :
English
ISSN :
1522-1598
Volume :
132
Issue :
1
Database :
MEDLINE
Journal :
Journal of neurophysiology
Publication Type :
Academic Journal
Accession number :
38810261
Full Text :
https://doi.org/10.1152/jn.00073.2024