Back to Search Start Over

A novel and simple method for measuring nano/microplastic concentrations in soil using UV-Vis spectroscopy with optimal wavelength selection.

Authors :
Tsuchida K
Imoto Y
Saito T
Hara J
Kawabe Y
Source :
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2024 Jul 15; Vol. 280, pp. 116366. Date of Electronic Publication: 2024 May 28.
Publication Year :
2024

Abstract

A simple method for measuring the concentration of nano/microplastics (N/MPs) in soil, which is difficult owing to the size of the filter mesh and the resolution of the measuring instrument, was investigated. A spectrophotometer was used for the measurements and polystyrene particles were used as the N/MP samples. When measuring N/MP concentrations in soil suspensions, absorbance was measured at two wavelengths, and the best combination of wavelengths for measurement was extracted because soil particles and leached components interfere with N/MP absorbance. A wavelength combination of 220-260 nm and 280-340 nm was found to be suitable for a variety of soils. As N/MPs are adsorbed on the surface of soil particles and precipitate with soil particles in suspension, a calibration curve was created between the concentration of N/MPs in the soil suspension and the N/MP content in the soil. The calibration curve showed a linear relationship, allowing for the estimation of the concentration of N/MPs in the soil. Although other N/MP materials, such as polyethylene and polyethylene terephthalate, must also still be considered and tested, this simple method has the potential to measure N/MPs in various types of soil.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2414
Volume :
280
Database :
MEDLINE
Journal :
Ecotoxicology and environmental safety
Publication Type :
Academic Journal
Accession number :
38806335
Full Text :
https://doi.org/10.1016/j.ecoenv.2024.116366