Back to Search
Start Over
CRISPR/Cas12a antifouling nanocomposite electrochemical biosensors enable amplification-free detection of Monkeypox virus in complex biological fluids.
- Source :
-
Nanoscale [Nanoscale] 2024 Jun 13; Vol. 16 (23), pp. 11318-11326. Date of Electronic Publication: 2024 Jun 13. - Publication Year :
- 2024
-
Abstract
- The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes. Notably, our electrochemical sensors exhibit the detection limit of 669 fM F3L gene without amplification, which is approximately a 15-fold improvement compared to fluorescence detection. This sensor also shows negligible changes in peak current after exposure to complex biological fluids, such as whole blood and serum, maintaining its sensitivity at 682 fM. This sensitivity is nearly identical to the conditions when only the F3L gene was present in PBS. In summary, our CRISPR-based electrochemical biosensors can be utilized as a high-performance diagnostic tool in resource-limited settings, representing a transformative leap forward in point-of-care testing. Beyond infectious diseases, the implications of this technology extend to various molecular diagnostics, establishing itself as a rapid, accurate, and versatile platform for detection of target analytes.
- Subjects :
- Humans
CRISPR-Associated Proteins metabolism
CRISPR-Associated Proteins genetics
Limit of Detection
Bacterial Proteins genetics
Animals
Endodeoxyribonucleases metabolism
Biofouling prevention & control
Mpox (monkeypox)
Biosensing Techniques methods
Nanocomposites chemistry
Electrochemical Techniques methods
CRISPR-Cas Systems
Subjects
Details
- Language :
- English
- ISSN :
- 2040-3372
- Volume :
- 16
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- Nanoscale
- Publication Type :
- Academic Journal
- Accession number :
- 38804270
- Full Text :
- https://doi.org/10.1039/d4nr01618a