Back to Search Start Over

Deep genome skimming reveals the hybrid origin of Pseudosasa gracilis (Poaceae: Bambusoideae).

Authors :
Hu XZ
Guo C
Qin SY
Li DZ
Guo ZH
Source :
Plant diversity [Plant Divers] 2023 Jun 07; Vol. 46 (3), pp. 344-352. Date of Electronic Publication: 2023 Jun 07 (Print Publication: 2024).
Publication Year :
2023

Abstract

Pseudosasa gracilis (Poaceae: Bambusoideae) is a temperate woody bamboo species endemic to South-central China with a narrow distribution. Previous phylogenetic studies revealed an unexpected, isolated phylogenetic position of Ps. gracilis . Here we conducted phylogenomic analysis by sampling populations of Ps. gracilis and its sympatric species Ps. nanunica and Sinosasa polytricha reflecting different genomic signals, by deep genome skimming. Integrating molecular evidence from chloroplast genes and genome-wide SNPs, we deciphered the phylogenetic relationships of Ps. gracilis . Both plastid and nuclear data indicate that Ps. gracilis is more closely related to Sinosasa , which is discordant with the taxonomic treatment. To further explore this molecular-morphological conflict, we screened 411 "perfect-copy" syntenic genes to reconstruct phylogenies using both the concatenation and coalescent methods. We observed extensive discordance between gene trees and the putative species tree. A significant hybridization event was detected based on 411 genes from the D subgenome, showing Ps. gracilis was a hybrid descendant between Sinosasa longiligulata and Ps. nanunica , with 63.56% and 36.44% inheritance probabilities of each parent. Moreover, introgression events were detected in the C subgenome between Ps. gracilis and S. polytricha in the same distribution region. Our findings suggest that sympatric hybridization and introgression play a crucial role in the origin of Ps. gracilis . By providing an empirical example of bamboo of hybrid origin using comprehensive analyses based on genomic data from different inheritance systems and morphological characters, our study represents a step forward in understanding of reticulate evolution of bamboos.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2023 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.)

Details

Language :
English
ISSN :
2468-2659
Volume :
46
Issue :
3
Database :
MEDLINE
Journal :
Plant diversity
Publication Type :
Academic Journal
Accession number :
38798728
Full Text :
https://doi.org/10.1016/j.pld.2023.06.001