Back to Search Start Over

Acute psychosocial stress modulates neural and behavioral substrates of cognitive control.

Authors :
Spencer C
Mill RD
Bhanji JP
Delgado MR
Cole MW
Tricomi E
Source :
Human brain mapping [Hum Brain Mapp] 2024 Jun 01; Vol. 45 (8), pp. e26716.
Publication Year :
2024

Abstract

Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.<br /> (© 2024 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1097-0193
Volume :
45
Issue :
8
Database :
MEDLINE
Journal :
Human brain mapping
Publication Type :
Academic Journal
Accession number :
38798117
Full Text :
https://doi.org/10.1002/hbm.26716