Back to Search Start Over

A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models.

Authors :
Chen X
Liu J
Park N
Cheng J
Source :
Biomolecules [Biomolecules] 2024 May 13; Vol. 14 (5). Date of Electronic Publication: 2024 May 13.
Publication Year :
2024

Abstract

The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein-protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods.

Details

Language :
English
ISSN :
2218-273X
Volume :
14
Issue :
5
Database :
MEDLINE
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
38785981
Full Text :
https://doi.org/10.3390/biom14050574