Back to Search Start Over

DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells.

Authors :
Xu W
Fei X
Cui Z
Pan D
Liu Y
Liu T
Source :
Human cell [Hum Cell] 2024 Jul; Vol. 37 (4), pp. 1091-1106. Date of Electronic Publication: 2024 May 23.
Publication Year :
2024

Abstract

Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3' untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.<br /> (© 2024. The Author(s) under exclusive licence to Japan Human Cell Society.)

Details

Language :
English
ISSN :
1749-0774
Volume :
37
Issue :
4
Database :
MEDLINE
Journal :
Human cell
Publication Type :
Academic Journal
Accession number :
38782857
Full Text :
https://doi.org/10.1007/s13577-024-01082-x