Back to Search Start Over

Human Umbilical Cord Mesenchymal Stem Cells Combined with Dehydroepiandrosterone Inhibits Inflammation-Induced Uterine Aging in Mice.

Authors :
Guan CY
Zhang D
Sun XC
Ma X
Xia HF
Source :
Stem cells and development [Stem Cells Dev] 2024 Aug; Vol. 33 (15-16), pp. 419-431. Date of Electronic Publication: 2024 Jun 26.
Publication Year :
2024

Abstract

With the postponement of the reproductive age of women, the difficulty of embryo implantation caused by uterine aging has become a key factor restricting fertility. However, there are few studies on protective interventions for naturally aging uteri. Although many factors cause uterine aging, such as oxidative stress (OS), inflammation, and fibrosis, their impact on uterine function manifests as reduced endometrial receptivity. This study aimed to use a combination of human umbilical cord mesenchymal stem cells (hUC-MSCs) and dehydroepiandrosterone (DHEA) to delay uterine aging. The results showed that the combined treatment of hUC-MSCs + DHEA increased the number of uterine glandular bodies and the thickness of the endometrium while inhibiting the senescence of endometrial epithelial cells. This combined treatment alleviates the expression of OS (reactive oxygen species, superoxide dismutase, and GSH-PX) and proinflammatory factors (interleukin [IL]-1, IL6, IL-18, and tumor necrosis factor-α) in the uterus, delaying the aging process. The combined treatment of hUC-MSCs + DHEA alleviated the abnormal hormone response of the endometrium, inhibited excessive accumulation and fibrosis of uterine collagen, and upregulated uterine estrogen and progesterone receptors through the PI3K/AKT/mTOR pathway. This study suggests that uterine aging can be delayed through hUC-MSCs + DHEA combination therapy, providing a new treatment method for uterine aging.

Details

Language :
English
ISSN :
1557-8534
Volume :
33
Issue :
15-16
Database :
MEDLINE
Journal :
Stem cells and development
Publication Type :
Academic Journal
Accession number :
38770820
Full Text :
https://doi.org/10.1089/scd.2023.0290