Back to Search Start Over

Synergistic effect of biochar with gypsum, lime, and farm manure on the growth and tolerance in rice plants under different salt-affected soils.

Authors :
Hamoud YA
Saleem T
Zia-Ur-Rehman M
Shaghaleh H
Usman M
Rizwan M
Alharby HF
Alamri AM
Al-Sarraj F
Alabdallah NM
Source :
Chemosphere [Chemosphere] 2024 Jul; Vol. 360, pp. 142357. Date of Electronic Publication: 2024 May 18.
Publication Year :
2024

Abstract

Soil salinization and sodication harm soil fertility and crop production, especially in dry regions. To combat this, using biochar combined with gypsum, lime, and farm manure is a promising solution for improving salt-affected soils. In a pot experiment, cotton stick biochar (BC) was applied at a rate of 20 t/ha in combination with gypsum (G), lime (L), and farm manure (F) at rates of 5 and 10 t/ha. These were denoted as BCG-5, BCL-5, BCF-5, BCG-10, BCL-10, and BCF-10. Three different types of soils with electrical conductivity (EC) to sodium adsorption ratio (SAR) ratios of 2.45:13.7, 9.45:22, and 11.56:40 were used for experimentation. The application of BCG-10 led to significant improvements in rice biomass, chlorophyll content, and overall growth. It was observed that applying BCG-10 to soils increased the membrane stability index by 75% in EC:SAR (2.45:13.7), 97% in EC:SAR (9.45:22), and 40% in EC:SAR (11.56:40) compared to respective control treatments. After BCG-10 was applied, the hydrogen peroxide in leaves dropped by 29%, 23%, and 21% in EC:SAR (2.45:13.7), EC:SAR (9.45:22), and EC:SAR (11.56:40) soils, relative to their controls, respectively. The application of BCG-10 resulted in glycine betaine increases of 60, 119, and 165% in EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils. EC: SAR (2.45:13.7), EC: SAR (9.45:22), and EC: SAR (11.56:40) soils all had 70, 109, and 130% more ascorbic acid in BCG-10 applied treatment, respectively. The results of this experiment show that BCG-10 increased the growth and physiological traits of rice plants were exposed to different levels of salt stress. This was achieved by lowering hydrogen peroxide levels, making plant cells more stable, and increasing non-enzymatic activity.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
360
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
38768791
Full Text :
https://doi.org/10.1016/j.chemosphere.2024.142357