Back to Search
Start Over
mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy.
- Source :
-
American journal of physiology. Cell physiology [Am J Physiol Cell Physiol] 2024 Jul 01; Vol. 327 (1), pp. C124-C139. Date of Electronic Publication: 2024 May 20. - Publication Year :
- 2024
-
Abstract
- Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila , respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy. NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.
- Subjects :
- Animals
Mice
Bone Morphogenetic Proteins metabolism
Cell Differentiation drug effects
Cell Line
Serum metabolism
Smad1 Protein metabolism
Smad1 Protein genetics
Smad5 Protein metabolism
Smad5 Protein genetics
Autophagy drug effects
Hypertrophy metabolism
Mechanistic Target of Rapamycin Complex 1 metabolism
Muscle Fibers, Skeletal metabolism
Muscle Fibers, Skeletal pathology
Muscle Fibers, Skeletal drug effects
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 1522-1563
- Volume :
- 327
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Cell physiology
- Publication Type :
- Academic Journal
- Accession number :
- 38766767
- Full Text :
- https://doi.org/10.1152/ajpcell.00237.2024