Back to Search Start Over

Dual α-globin and truncated EPO receptor knockin restores hemoglobin production in α-thalassemia-derived red blood cells.

Authors :
Chu SN
Soupene E
Wienert B
Yin H
Sharma D
McCreary T
Jia K
Homma S
Hampton JP
Gardner JM
Conklin BR
MacKenzie TC
Porteus MH
Cromer MK
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 May 07. Date of Electronic Publication: 2024 May 07.
Publication Year :
2024

Abstract

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero . However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to imbalance of β-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the β-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.<br />Competing Interests: M.H.P. is a member of the scientific advisory board of Allogene Therapeutics. M.H.P. is on the Board of Directors of Graphite Bio. M.H.P. has equity in CRISPR Tx. T.C.M. is on the scientific advisory board of Acrigen and receives grant funding from Novartis, BioMarin, and Biogen. M.K.C., B.W., T.C.M., and M.H.P. hold patent US-20220280571-A1 and provisional patent no. 63/236,178.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
38766216
Full Text :
https://doi.org/10.1101/2023.09.01.555926