Back to Search Start Over

Developing a machine learning model for predicting venlafaxine active moiety concentration: a retrospective study using real-world evidence.

Authors :
Chang L
Hao X
Yu J
Zhang J
Liu Y
Ye X
Yu Z
Gao F
Pang X
Zhou C
Source :
International journal of clinical pharmacy [Int J Clin Pharm] 2024 Aug; Vol. 46 (4), pp. 899-909. Date of Electronic Publication: 2024 May 16.
Publication Year :
2024

Abstract

Background: Venlafaxine is frequently prescribed for patients with depression. To control the concentration of venlafaxine within the therapeutic window for the best treatment effect, a model to predict venlafaxine concentration is necessary.<br />Aim: Our objective was to develop a prediction model for venlafaxine concentration using real-world evidence based on machine learning and deep learning techniques.<br />Method: Patients who underwent venlafaxine treatment between November 2019 and August 2022 were included in the study. Important variables affecting venlafaxine concentration were identified using a combination of univariate analysis, sequential forward selection, and machine learning techniques. Predictive performance of nine machine learning and deep learning algorithms were assessed, and the one with the optimal performance was selected for modeling. The final model was interpreted using SHapley Additive exPlanations.<br />Results: A total of 330 eligible patients were included. Five influential variables that affect venlafaxine concentration were venlafaxine daily dose, sex, age, hyperlipidemia, and adenosine deaminase. The venlafaxine concentration prediction model was developed using the eXtreme Gradient Boosting algorithm (R <superscript>2</superscript>  = 0.65, mean absolute error = 77.92, root mean square error = 93.58). In the testing cohort, the accuracy of the predicted concentration within ± 30% of the actual concentration was 73.49%. In the subgroup analysis, the prediction accuracy was 69.39% within the recommended therapeutic range of venlafaxine concentration within ± 30% of the actual value.<br />Conclusion: The XGBoost model for predicting blood concentration of venlafaxine using real-world evidence was developed, guiding the adjustment of regimen in clinical practice.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Details

Language :
English
ISSN :
2210-7711
Volume :
46
Issue :
4
Database :
MEDLINE
Journal :
International journal of clinical pharmacy
Publication Type :
Academic Journal
Accession number :
38753076
Full Text :
https://doi.org/10.1007/s11096-024-01724-y