Back to Search
Start Over
Rhein suppresses esophageal cancer development by regulating cell cycle through DNMT3B gene.
- Source :
-
Medical oncology (Northwood, London, England) [Med Oncol] 2024 May 14; Vol. 41 (6), pp. 153. Date of Electronic Publication: 2024 May 14. - Publication Year :
- 2024
-
Abstract
- The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.<br /> (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Subjects :
- Humans
Cell Line, Tumor
Computational Biology
Gene Expression Regulation, Neoplastic drug effects
Rheum chemistry
Anthraquinones pharmacology
Cell Cycle drug effects
Cell Proliferation drug effects
DNA (Cytosine-5-)-Methyltransferases genetics
DNA (Cytosine-5-)-Methyltransferases metabolism
DNA Methyltransferase 3B
Esophageal Neoplasms genetics
Esophageal Neoplasms drug therapy
Esophageal Neoplasms pathology
Esophageal Neoplasms metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1559-131X
- Volume :
- 41
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Medical oncology (Northwood, London, England)
- Publication Type :
- Academic Journal
- Accession number :
- 38743323
- Full Text :
- https://doi.org/10.1007/s12032-024-02359-9