Back to Search
Start Over
Generation of Slco1a4-Cre ERT2 -tdTomato Knock-in Mice for Specific Cerebrovascular Endothelial Cell Targeting.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2024 Apr 25; Vol. 25 (9). Date of Electronic Publication: 2024 Apr 25. - Publication Year :
- 2024
-
Abstract
- The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 ( Slco1a4 ) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26 <superscript>LSL-EYFP</superscript> Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.
- Subjects :
- Animals
Mice
Gene Knock-In Techniques
Mice, Transgenic
Blood-Brain Barrier metabolism
Organic Anion Transporters genetics
Organic Anion Transporters metabolism
Tamoxifen pharmacology
Red Fluorescent Protein
Endothelial Cells metabolism
Integrases metabolism
Integrases genetics
Brain metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 25
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 38731886
- Full Text :
- https://doi.org/10.3390/ijms25094666