Back to Search Start Over

Corrosion Resistance of Fe-Based Amorphous Films Prepared by the Radio Frequency Magnetron Sputter Method.

Authors :
Lin TN
Liao PH
Wang CC
Lee HB
Tsay LW
Source :
Materials (Basel, Switzerland) [Materials (Basel)] 2024 Apr 28; Vol. 17 (9). Date of Electronic Publication: 2024 Apr 28.
Publication Year :
2024

Abstract

Amorphous thin films can be applied to increase the anti-corrosion ability of critical components. Atomized FeCrNiMoCSiB powders were hot-pressed into a disc target for R. F. magnetron sputtering on a 316L substrate to upgrade its corrosion resistance. The XRD spectrum confirmed that the film deposited by R. F. magnetron sputtering was amorphous. The corrosion resistance of the amorphous film was evaluated in a 1 M HCl solution with potentiodynamic polarization tests, and the results were contrasted with those of a high-velocity oxy-fuel (HVOF) coating and 316L, IN 600, and C 276 alloys. The results indicated that the film hardness and elastic modulus, as measured using a nanoindenter, were 11.1 and 182 GPa, respectively. The principal stresses in two normal directions of the amorphous film were about 60 MPa and in tension. The corrosion resistance of the amorphous film was much greater than that of the other samples, which showed a broad passivation region, even in a 1 M HCl solution. Although the amorphous film showed high corrosion resistance, the original pinholes in the film were weak sites to initiate corrosion pits. After polarization tests, large, deep trenches were seen in the corroded 316L substrate; numerous fine patches in the IN 600 alloy and grain boundary corrosion in the C276 alloy were observed.

Details

Language :
English
ISSN :
1996-1944
Volume :
17
Issue :
9
Database :
MEDLINE
Journal :
Materials (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
38730876
Full Text :
https://doi.org/10.3390/ma17092071