Back to Search
Start Over
Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster.
- Source :
-
Cell [Cell] 2024 May 09; Vol. 187 (10), pp. 2574-2594.e23. - Publication Year :
- 2024
-
Abstract
- High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Brain ultrastructure
Brain metabolism
Connectome
gamma-Aminobutyric Acid metabolism
Neural Networks, Computer
Neurons metabolism
Neurons ultrastructure
Drosophila melanogaster ultrastructure
Drosophila melanogaster metabolism
Microscopy, Electron methods
Neurotransmitter Agents metabolism
Synapses ultrastructure
Synapses metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1097-4172
- Volume :
- 187
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Cell
- Publication Type :
- Academic Journal
- Accession number :
- 38729112
- Full Text :
- https://doi.org/10.1016/j.cell.2024.03.016