Back to Search Start Over

BUB1 inhibition sensitizes lung cancer cell lines to radiotherapy and chemoradiotherapy.

Authors :
Thoidingjam S
Sriramulu S
Hassan O
Brown SL
Siddiqui F
Movsas B
Gadgeel S
Nyati S
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2024 Apr 23. Date of Electronic Publication: 2024 Apr 23.
Publication Year :
2024

Abstract

Background: Lung cancer is a major public health concern, with high incidence and mortality. Despite advances in targeted therapy and immunotherapy, microtubule stabilizers (paclitaxel, docetaxel), DNA intercalating platinum drugs (cisplatin) and radiation therapy continue to play a critical role in the management of locally advanced and metastatic lung cancer. Novel molecular targets would provide opportunities for improving the efficacies of radiotherapy and chemotherapy.<br />Hypothesis: We hypothesize that BUB1 (Ser/Thr kinase) is over-expressed in lung cancers and that its inhibition will sensitize lung cancers to chemoradiation.<br />Methods: BUB1 inhibitor (BAY1816032) was combined with platinum (cisplatin), microtubule poison (paclitaxel), a PARP inhibitor (olaparib) and radiation in cell proliferation and radiation sensitization assays. Biochemical and molecular assays were used to evaluate their impact on DNA damage signaling and cell death mechanisms.<br />Results: BUB1 expression assessed by immunostaining of lung tumor microarrays (TMAs) confirmed higher BUB1 expression in NSCLC and SCLC compared to that of normal tissues. BUB1 overexpression in lung cancer tissues correlated directly with expression of TP53 mutations in non-small cell lung cancer (NSCLC). Elevated BUB1 levels correlated with poorer overall survival in NSCLC and small cell lung cancer (SCLC) patients. A BUB1 inhibitor (BAY1816032) synergistically sensitized lung cancer cell lines to paclitaxel and olaparib. Additionally, BAY1816032 enhanced cell killing by radiation in both NSCLC and SCLC. Molecular changes following BUB1 inhibition suggest a shift towards pro-apoptotic and anti-proliferative states, indicated by altered expression of BAX, BCL2, PCNA, and Caspases 9 and 3.<br />Conclusion: A direct correlation between BUB1 protein expression and overall survival was shown. BUB1 inhibition sensitized both NSCLC and SCLC to various chemotherapies (cisplatin, paclitaxel) and targeted therapy (PARPi). Furthermore, we present the novel finding that BUB1 inhibition sensitized both NSCLC and SCLC to radiotherapy and chemoradiation. Our results demonstrate BUB1 inhibition as a promising strategy to sensitize lung cancers to radiation and chemoradiation therapies.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
38712071
Full Text :
https://doi.org/10.1101/2024.04.19.590355