Back to Search Start Over

Hot Cordilleran hinterland promoted lower crust mobility and decoupling of Laramide deformation.

Authors :
Vlaha DR
Zuza AV
Chen L
Harlaux M
Source :
Nature communications [Nat Commun] 2024 May 04; Vol. 15 (1), pp. 3750. Date of Electronic Publication: 2024 May 04.
Publication Year :
2024

Abstract

The Late Cretaceous to Paleogene Laramide orogen in the North American Cordillera involved deformation >1,000 km from the plate margin that has been attributed to either plate-boundary end loading or basal traction exerted on the upper plate from the subducted Farallon flat slab. Prevailing tectonic models fail to explain the relative absence of Laramide-aged (ca. 90-60 Ma) contractional deformation within the Cordillera hinterland. Based on Raman spectroscopy of carbonaceous material thermometry and literature data from the restored upper 15-20 km of the Cordilleran crust we reconstruct the Late Cretaceous thermal architecture of the hinterland. Interpolation of compiled temperature data (n = 200) through a vertical crustal column reveals that the hinterland experienced a continuous but regionally elevated, upper-crustal geothermal gradient of >40 °C/km during Laramide orogenesis, consistent with peak metamorphic conditions and synchronous peraluminous granitic plutonism. The hot and partially melted hinterland promoted lower crust mobility and crust-mantle decoupling during flat-slab traction.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
38704380
Full Text :
https://doi.org/10.1038/s41467-024-48182-8