Back to Search Start Over

Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants.

Authors :
Isono E
Li J
Pulido P
Siao W
Spoel SH
Wang Z
Zhuang X
Trujillo M
Source :
The Plant cell [Plant Cell] 2024 Sep 03; Vol. 36 (9), pp. 3074-3098.
Publication Year :
2024

Abstract

Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.<br />Competing Interests: Conflict of interest statement. None declared.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our siteā€”for further information please contact journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1532-298X
Volume :
36
Issue :
9
Database :
MEDLINE
Journal :
The Plant cell
Publication Type :
Academic Journal
Accession number :
38701343
Full Text :
https://doi.org/10.1093/plcell/koae141