Back to Search Start Over

CCK+ Interneurons Contribute to Thalamus-Evoked Feed-Forward Inhibition in the Prelimbic Prefrontal Cortex.

Authors :
Kamalova A
Manoocheri K
Liu X
Casello SM
Huang M
Baimel C
Jang EV
Anastasiades PG
Collins DP
Carter AG
Source :
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2024 Jun 05; Vol. 44 (23). Date of Electronic Publication: 2024 Jun 05.
Publication Year :
2024

Abstract

Interneurons in the medial prefrontal cortex (PFC) regulate local neural activity to influence cognitive, motivated, and emotional behaviors. Parvalbumin-expressing (PV+) interneurons are the primary mediators of thalamus-evoked feed-forward inhibition across the mouse cortex, including the anterior cingulate cortex, where they are engaged by inputs from the mediodorsal (MD) thalamus. In contrast, in the adjacent prelimbic (PL) cortex, we find that PV+ interneurons are scarce in the principal thalamorecipient layer 3 (L3), suggesting distinct mechanisms of inhibition. To identify the interneurons that mediate MD-evoked inhibition in PL, we combine slice physiology, optogenetics, and intersectional genetic tools in mice of both sexes. We find interneurons expressing cholecystokinin (CCK+) are abundant in L3 of PL, with cells exhibiting fast-spiking (fs) or non-fast-spiking (nfs) properties. MD inputs make stronger connections onto fs-CCK+ interneurons, driving them to fire more readily than nearby L3 pyramidal cells and other interneurons. CCK+ interneurons in turn make inhibitory, perisomatic connections onto L3 pyramidal cells, where they exhibit cannabinoid 1 receptor (CB1R) mediated modulation. Moreover, MD-evoked feed-forward inhibition, but not direct excitation, is also sensitive to CB1R modulation. Our findings indicate that CCK+ interneurons contribute to MD-evoked inhibition in PL, revealing a mechanism by which cannabinoids can modulate MD-PFC communication.<br />Competing Interests: The authors declare no competing financial interests.<br /> (Copyright © 2024 the authors.)

Details

Language :
English
ISSN :
1529-2401
Volume :
44
Issue :
23
Database :
MEDLINE
Journal :
The Journal of neuroscience : the official journal of the Society for Neuroscience
Publication Type :
Academic Journal
Accession number :
38697841
Full Text :
https://doi.org/10.1523/JNEUROSCI.0957-23.2024