Back to Search
Start Over
Motion correction and super-resolution for multi-slice cardiac magnetic resonance imaging via an end-to-end deep learning approach.
- Source :
-
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society [Comput Med Imaging Graph] 2024 Jul; Vol. 115, pp. 102389. Date of Electronic Publication: 2024 Apr 29. - Publication Year :
- 2024
-
Abstract
- Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart (V <subscript>HR</subscript> ) from acquired CMR SAX slices (V <subscript>LR</subscript> ). We define the transformation from V <subscript>LR</subscript> to V <subscript>HR</subscript> as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.33±0.74 mm to 1.36±0.63 mm and generated accurate high resolution 3D volumes with Dice of 0.974±0.010 for left ventricle (LV) and 0.938±0.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.945±0.023 for LV and 0.786±0.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at https://github.com/zhennongchen/CMR&#95;MC&#95;SR&#95;End2End.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0771
- Volume :
- 115
- Database :
- MEDLINE
- Journal :
- Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
- Publication Type :
- Academic Journal
- Accession number :
- 38692199
- Full Text :
- https://doi.org/10.1016/j.compmedimag.2024.102389