Back to Search Start Over

A simple and highly sensitive flexible sensor with extended-gate field-effect transistor for epinephrine detection utilizing InZnSnO sensing films.

Authors :
Pan TM
Lin LA
Ding HY
Her JL
Pang ST
Source :
Talanta [Talanta] 2024 Aug 01; Vol. 275, pp. 126178. Date of Electronic Publication: 2024 Apr 28.
Publication Year :
2024

Abstract

This study introduces a straightforward method for depositing InZnSnO films onto flexible polyimide substrates at room temperature, enabling their application in electrochemical pH sensing and the detection of epinephrine. A comprehensive analysis of these sensing films, spanning structural, morphological, compositional, and profiling characteristics, was conducted using diverse techniques, including X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy. The investigation into the influence of oxygen flow rates on the performance of InZnSnO sensitive films revealed a significant correlation between their structural properties and sensing capabilities. Notably, exposure to an oxygen flow rate of 30/2 (Ar/O <subscript>2</subscript> ) the ratio of resulted in the InZnSnO sensitive film demonstrating outstanding pH sensitivity at 59.58 mV/pH within a broad pH range of 2-12, surpassing the performance observed with other oxygen flow rates. Moreover, under this specific condition, the film exhibited excellent stability, with a minimal drift rate of 0.14 mV/h at pH 7 and a low hysteresis voltage of 1.8 mV during a pH cycle of 7 → 4→7 → 10→7. Given the critical role of epinephrine in mammalian central nervous and hormone systems, monitoring its levels is essential for assessing human health. To facilitate the detection of epinephrine, we utilized the carboxyl group of 4-formylphenylboronic acid to enable a reaction with the amino group of the 3-aminopropyltriethoxysilane-coated InZnSnO film. Through optimization, the resulting InZnSnO-based flexible sensor displayed a broad and well-defined linear relationship within the concentration range of 10 <superscript>-7</superscript> to 0.1 μM. In practical applications, this sensor proved effective in analyzing epinephrine in human serum, showcasing notable selectivity, stability, and reproducibility. The promising outcomes of this study underscore the potential for future applications, leveraging the advantages of electrochemical sensors, including affordability, rapid response, and user-friendly operation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3573
Volume :
275
Database :
MEDLINE
Journal :
Talanta
Publication Type :
Academic Journal
Accession number :
38692052
Full Text :
https://doi.org/10.1016/j.talanta.2024.126178