Back to Search
Start Over
Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties.
- Source :
-
Journal of the American Chemical Society [J Am Chem Soc] 2024 May 15; Vol. 146 (19), pp. 13066-13082. Date of Electronic Publication: 2024 Apr 30. - Publication Year :
- 2024
-
Abstract
- Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [Cu <superscript>I</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )] <superscript>1+</superscript> {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>2-</superscript> )] <superscript>1+</superscript> , hydroperoxo [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )( <superscript>-</superscript> OOH)] <superscript>2+</superscript> , and superoxo [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>•-</superscript> )] <superscript>2+</superscript> species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>•-</superscript> )] <superscript>2+</superscript> is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>2-</superscript> )] <superscript>1+</superscript> ⇄ [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>•-</superscript> )] <superscript>2+</superscript> , is established utilizing Me <subscript>8</subscript> Fc <superscript>+</superscript> /Cr(η <superscript>6</superscript> -C <subscript>6</subscript> H <subscript>6</subscript> ) <subscript>2</subscript> , allowing for [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>•-</superscript> )] <superscript>2+</superscript> /[Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>2-</superscript> )] <superscript>1+</superscript> reduction potential calculation, E °' = -0.44 ± 0.01 V vs Fc <superscript>+/0</superscript> , also confirmed by cryoelectrochemical measurements ( E °' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>2-</superscript> )] <superscript>1+</superscript> produces [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )( <superscript>-</superscript> OOH)] <superscript>2+</superscript> ; using a phosphazene base, an acid-base equilibrium was achieved, p K <subscript>a</subscript> = 22.3 ± 0.7 for [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )( <superscript>-</superscript> OOH)] <superscript>2+</superscript> . The BDFE <subscript>OO-H</subscript> = 80.3 ± 1.2 kcal/mol, as calculated for [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )( <superscript>-</superscript> OOH)] <superscript>2+</superscript> ; this is further substantiated by H atom abstraction from O-H substrates by [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )(O <subscript>2</subscript> <superscript>•-</superscript> )] <superscript>2+</superscript> forming [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )( <superscript>-</superscript> OOH)] <superscript>2+</superscript> . In comparison to known analogues, the thermodynamic and spectroscopic properties of [Cu <superscript>II</superscript> <subscript>2</subscript> (BPMPO <superscript>-</superscript> )] O <subscript>2</subscript> -derived adducts can be accounted for based on chelate ring size variations built into the BPMPO <superscript>-</superscript> framework and the resulting enhanced Cu <superscript>II</superscript> -ion Lewis acidity.
Details
- Language :
- English
- ISSN :
- 1520-5126
- Volume :
- 146
- Issue :
- 19
- Database :
- MEDLINE
- Journal :
- Journal of the American Chemical Society
- Publication Type :
- Academic Journal
- Accession number :
- 38688016
- Full Text :
- https://doi.org/10.1021/jacs.3c14422