Back to Search
Start Over
Adaptive prediction for effluent quality of wastewater treatment plant: Improvement with a dual-stage attention-based LSTM network.
- Source :
-
Journal of environmental management [J Environ Manage] 2024 May; Vol. 359, pp. 120887. Date of Electronic Publication: 2024 Apr 27. - Publication Year :
- 2024
-
Abstract
- The accurate effluent prediction plays a crucial role in providing early warning for abnormal effluent and achieving the adjustment of feedforward control parameters during wastewater treatment. This study applied a dual-staged attention mechanism based on long short-term memory network (DA-LSTM) to improve the accuracy of effluent quality prediction. The results showed that input attention (IA) and temporal attention (TA) significantly enhanced the prediction performance of LSTM. Specially, IA could adaptively adjust feature weights to enhance the robustness against input noise, with R <superscript>2</superscript> increased by 13.18%. To promote its long-term memory ability, TA was used to increase the memory span from 96 h to 168 h. Compared to a single LSTM model, the DA-LSTM model showed an improvement in prediction accuracy by 5.10%, 2.11%, 14.47% for COD, TP, and TN. Additionally, DA-LSTM demonstrated excellent generalization performance in new scenarios, with the R <superscript>2</superscript> values for COD, TP, and TN increasing by 22.67%, 20.06%, and 17.14% respectively, while the MAPE values decreased by 56.46%, 63.08%, and 42.79%. In conclusion, the DA-LSTM model demonstrated excellent prediction performance and generalization ability due to its advantages of feature-adaptive weighting and long-term memory focusing. This has forward-looking significance for achieving efficient early warning of abnormal operating conditions and timely management of control parameters.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Subjects :
- Waste Disposal, Fluid methods
Neural Networks, Computer
Wastewater
Subjects
Details
- Language :
- English
- ISSN :
- 1095-8630
- Volume :
- 359
- Database :
- MEDLINE
- Journal :
- Journal of environmental management
- Publication Type :
- Academic Journal
- Accession number :
- 38678908
- Full Text :
- https://doi.org/10.1016/j.jenvman.2024.120887